

Modélisation du risque incendie dans des structures multi-compartimentées

Nina Dizet (CIFRE ANRT/RS2N, 2018-2021) Directeurs de thèse : B. Porterie/ Y. Pizzo

Projet MARINER-DECM 2018-2020 (ANR-ASMA-17-0005): LEMTA – DGA TN – RS2N – PPRIME - IUSTI

Contexte et objectif

- Maitrise du risque incendie dans un (très) grand nombre de locaux
- Caractère dual civil/militaire
- Suite du projet MARINER (ANR-ASTR-2012-0002)
- > Objectif :

- **Comportement au feu de matériaux structurels** (acier, béton, matériaux bio-sourcés, isolants, composites navals)
- Feux non conventionnels (multi-combustibles, matière pyrotechnique)
- Combustion sous-oxygénée
- Réseau réaliste de ventilation
- **Modèle d'évacuation** (opacité des fumées, visibilité, comportement humain)
- Lutte par aspersion d'eau (vol. et parois) ou agents inhibiteurs
 - ✓ Assimilation de données (détection)

✓ validation des sous-modèles

• **Expérimentations** : caisson DIAMAN, plateforme DECIMA de DGA, exercices d'évacuation au LEMTA et DGA Tn ??)

Navires de guerre et bâtiments navals

Structures urbaines (IGH)

PLAN

Contexte du projet

- I. Visibilité dans les fumées
 - 1. Campagne d'essais
 - 2. Modèle de suies
 - 3. Estimation de la visibilité
- II. Dynamique de remplissage des locaux

Conclusion

1. Campagne d'essais

• Réalisé en collaboration avec LEMTA-DGATN-RS2N-PPRIME-IUSTI dans le caisson DIAMAN

1. Campagne d'essais

- Conditions de l'expérience :
 - Ajout d'opacimètres positionnés aux hauteurs (en m) suivantes :
 - 0 1.3, 1.8, 2.3 et 2.8
 - 0 Longueurs d'ondes : 520, 642, 785 nm
 - Combustibles : heptane, PMMA et bois
 - Obtenir le coefficient d'extinction des fumées en fonction de la hauteur, la longueur d'onde et du combustible
 - But : déterminer la concentration de suies dans les fumées

1. Campagne d'essais

• Calcul la fraction volumique de suie avec :

$$f_v = \lambda \frac{K_{ext}}{K_e}$$

• Ke : coefficient d'extinction sans dimension, dans la littérature : $K_e \approx 8,7$ (ex. Hébert et al., 2012; Krishnan et Faeth, Rapport NIST, 1999: 8,4 pour l'heptane)

• Kext : le coefficient d'extinction expérimental dans la loi de Beer Lambert : $\frac{I}{I_0} = exp(-K_{ext}L)$

 $\circ \lambda$ Longueur d'onde en nm

1. Campagne d'essais : Résultats essais Heptane 12L

O Modélisation de l'essais avec SAFIR

• SAFIR :

- Code de CFD 3D
- Développement IUSTI / DGA TN
- Modèle de suies utilisé :
 - Taux de conversion de suie : 0,037 pour l'heptane

Amélioration du modèle de suie

2. Modèle de suies de Tesner Magnussen

• Deux équations des transports sont résolues pour le nombre de noyaux radicalaires par unité de masse du mélange (X_n) , et pour la fraction massique de suies (Y_s) :

$$\frac{\partial \rho Y_s}{\partial t} + \nabla . \left(\rho \boldsymbol{\nu} Y_s \right) = \nabla \left(\frac{\mu_e}{\sigma_s} \nabla Y_s \right) + \underbrace{w_{s,f}}_{Formation} - \underbrace{w_{s,c}}_{oxydation}$$
$$\frac{\partial \rho X_n}{\partial t} + \nabla . \left(\rho \boldsymbol{\nu} X_n \right) = \nabla . \left(\frac{\mu_e}{\sigma_s} \nabla X_n \right) + \underbrace{w_{n,f}}_{Formation} - \underbrace{w_{n,c}}_{oxydation}$$

• Formation des noyaux radicalaires

$$w_{n,f} = \frac{a_0}{N_A} \rho Y_F f_c e^{-\frac{T_A}{T}} + \zeta(T)(f-g)\rho X_n - \frac{g_0 \rho^2 X_n Y_s}{m_p}$$

2. Modèle de suies de Tesner Magnussen

• Formation des particules de suies

$$w_{s,f} = am_p \rho N_a X_n - b\rho^2 N_A X_n Y_s$$

• Oxydation : modèle de Leung et al.

$$w_{s,c} = A_{OX} \sqrt{T} e^{-\frac{T_{a,OX}}{T}} S M_{C_s} \frac{Y_{O_2} \rho}{M_{O_2}} et w_{n,c} = R_{s,c} \frac{X_n}{Y_s}$$

Paramètre	Valeur	Unité	
a_0	1.35×10^{13}	$kg^{-1}.s^{-1}$	
f-g	100	s ⁻¹	
T_A	85000	K	
	90000		
T _c	1200	K	
${g}_0$	10^{-15}	$m^{-3}.part^{-1}.s^{-1}$	
а	10 ⁵	s ⁻¹	
b	8×10^{-14}	$m^{3}.part^{-1}.s^{-1}$	
Aox	715	$m. s^{-1}. K^{-1/2}$	
$T_{a,OX}$	19 800	K	

2. Modèle de suies de Tesner Magnussen

Modèle de taux de conversion de suie (idem FDS) Taux cst 0.037 et pas d'oxydation Modèle de Tesner-Magnussen (2 eqs) + modèle d'oxydation de Leung et al.

3. Estimation de la visibilité

• Calcul de la distance de visibilité :

Jin et Yamada:
$$V = \begin{cases} \frac{3}{k} & objet \ real flechissant \\ \frac{8}{k} & objet \ lumineux \end{cases}$$

• Coefficient d'extinction :

$$K_e = \sigma_s C_s = \sigma_s \rho_s f_v$$

- σ_s : surface d'extinction spécifique de suie (m²/kg)
- Littérature (FDS): $\sigma_s \approx 8700 \text{ m}^2/\text{kg}$
- $\rho_s = 1800 \ kg/m^3$

o Ex:

• Si
$$f_v = 0,1 \, ppm$$
 alors $K_e = 1,6 \, m^{-1}$ et $V = 1,88 \, m \, ou \, V = 5m$

PLAN

Contexte du projet

- I. Visibilité dans les fumées
- II. Dynamique de remplissage des locaux
 - 1. Présentation LUCIFER
 - 2. Amélioration LUCIFER
 - 3. Comparaison FDS

Conclusion

1. Présentation de LUCIFER

Qu'est ce que LUCIFER?

- Propagation du feu d'un local à un autre
 - Connections à courte distance : parois et ouverture
 - Connections à longue distance: réseau de ventilation
- Réseau de locaux:
 - Polydisperse (locaux de formes et tailles différentes)
 - Amorphe (pas de régularité géométrique, répartition réelle selon plan)
- Approche statistique basée sur des densités de probabilité
 - Occurrence de flashover et de feu pleinement développé
 - Durée de transmission du feu par les parois, les ouvertures et les gaines de ventilation

Représentation sous forme de graphe des chemins existants entre les différents locaux du navire :

- \circ les nœuds=locaux
- les liens = connections entre deux locaux voisins ou distants

1. Présentation de LUCIFER

Paramètres du modèle

Evénement	Moyenne	Ecart-type	
Flashover Zone chaude : 350°C	Х	X	
Durée du feu pleinement développé	Х	X	Code à zones ŒIL (C. Lallemand, DGA Tn) Expériences DIAMAN
Transmission horizontale SOLAS : +140°C face opposée	Х	X	
Transmission verticale vers le haut SOLAS : +140°C face opposée	Х	X	
Transmission verticale vers le bas SOLAS : +140°C face opposée	Х	X	
Transmission gaine traversante SOLAS : +140°C	Х	X	CodeSAEIP
Transmission gaine débouchante SOLAS : gaz >250°C	Х	X	Expériences DIAMAN

- 1. Présentation de LUCIFER Paramètres du code à zone OEIL
 - Code à zones :
 - Zone chaude / zone froide / Panache
 - Pour chaque zone :
 - Bilan masse et énergie
 - Masse volumique et température moyenne des gaz
 - Bilan de quantité de mouvement en zone chaude :
 - Vitesse de déplacement de l'interface

- 2. Amélioration de LUCIFER
- 0 Ajout de la propagation des fumées
- Données d'entrée :
 - Position de l'interface à l'état stationnaire, débit de fumée
 - Phase de croissance du débit de fumée en αt^2 (même croissance que le débit de pyrolyse)

• Obtention de la dynamique de remplissage des locaux par les fumées

• Comparaison à FDS

- 2. Amélioration de LUCIFER
- Hypothèses :
 - Propagation horizontale
 - 0 Locaux séparés par une porte (2 m de hauteur)
 - 0 Des que les fumées atteignent la porte, elles se propagent aux locaux adjacents
 - Quand les fumées atteignent leur hauteur limite, elles se déversent intégralement dans les locaux adjacents
 - Proportion de fumées se déversant dans les locaux adjacents : $\chi = \frac{hauteur porte-hauteur fumées}{hauteur limite-hauteur porte}$
 - Propagation verticale
 - 0 Immédiate, si le local source possède un local adjacent vers le haut
 - Quand le local source a fini de se remplir pour un local adjacent bas
 - Conservation du débit massique de fumée dans chaque local

3. Comparaison FDS

O But : vérifier la propagation horizontale des fumées

• Cas test :

- 7 locaux de dimension 3m×3m ×3m
 - connectés par des portes de 2m×1m
 - Parois en acier de 1 cm
- Feu d'heptane 1 MW dans le local central

- Conditions de calcul dans FDS
 - Taux de conversion de suie de 0,037 pour l'heptane
 - Pas d'oxydation des suies

3. Comparaison FDS

→ Dynamique de remplissage dans LUCIFER en accord avec FDS

Conclusion

- Implémentation modèle de suies dans SAFIR validée par l'expérience
- Développement d'un modèle de propagation des fumées dans LUCIFER

- Pour la suite du projet :
 - Implémentation dans LUCIFER du modèle d'évacuation du LEMTA
 - Assimilation de données (détection, lutte) pour corriger en temps réel la cartographie du feu
 - Démonstrations navire existant et IGH

